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1. Introduction
Rainfall is one of the most important

phenomenona of monsoon season. The amount of
rainfall fluctuates in days, weeks, months and
seasons over a wide range. The question however
remains: whether the variations are purely random
or there remains an identifiable pattern in variations.
A variation is perhaps, the fluctuation about a long
term average value. The variability may be on
several time scales, such as days, weeks and
months or diverse spatial scales, such as station,
district or state. The South West Monsoon (SWM),
organized spatially over large scale, persistent in
time for several months. It would thus be useful to
study the data on few optimum scales. In the
present investigation, the monthly rainfall data of
West Bengal has been considered. The preliminary
stat ist ical information is available.  The
autocorrelations and power spectral densities of the
stations are obtained (Chandra and Dhar, 1975;
Basu, 2001; Basu et. al., 2004 and Basak, 2014). It
is revealed that they are mostly white noise
processes except a few cases. In fact, no temporal
pattern emerges in monthly rainfall at station level.
However, as the inter-station data are known to be
spatially correlated, there may be some kind of
trend that could be identified. The present work is
connected with both spatial and temporal variation
by decomposing the large scale data into principal
components (PCs) in time and empirical orthogonal
function (EOF) in space. Earlier, few works in this
respect in All India level are Bedi and Bindra (1980),
Hastenrath and Rosen (1983), Iyenger and Basak

(1994); for north-east India Mahapatra et al. (2001);
for Karnataka, Iyenger (1991); for West Bengal,
Basak (2014). The main emphasis in this paper is
to locate spatial structure in the field and the
temporal pattern detectable in the data. In the
present study it is shown that PCs can be used to
compare and if necessary, group the ‘years’. The
PC of monthly and seasonal data reveals
interesting information about intra-seasonal and
inter-annual variability.

2. Data
The analyzed data in current investigation are

the monthly rainfall data of 21 selected stations
spread over West Bengal and extending over 60
years from 1901 to 1960. The stations considered
in West Bengal are presented in Fig. 1 and
corresponding details are presented in Table 1.
While it would be reasonable to consider more
number of stations, there are restrictions due to
data-gaps and unequal length of time series.
Moreover, it is not clear whether inclusion of more
number of stations would enhance or dilute the
signal that may be present. Thus, a skeleton number
of stations are considered in the study. The state
of West Bengal is of considerable interest, as two
meteorological subdivisions of Indian
Meteorological Department, namely, Gangetic West
Bengal (GWB) and Sub-Himalayan West Bengal
(SHWB) are in West Bengal. The GWB receives
about 60% of SWM rainfall namely 9000 mm.
Regarding monthly analysis, SHWB receives
maximum rainfall in July, accounting for 40% of total
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SWM period. It is followed by June, August and
September. With this in view, monthly PCA analysis
is carried out for SWM period (June-September) of
the stations of West Bengal.

3. Method of Analysis
The state wise data matrix of size 21x60 has

been used for analysis. Firstly, the statistical
properties such as mean, standard deviation,
skewness and kurtosis are evaluated for each
station. For Principal Component Analysis (PCA)
the mean centered data time series is analyzed to
find the principal components (PC) as presented
(Gnanadesikan, 1977).

Let, Rit be the actual rainfall at station i (i=1, 2,..,
M) in the year t (t=1,2,..,N), then,  the  centered
data series are

rit  =(Rit – mi ):;    mi = Rit

The covariance matrix is constructed as

TABLE 1
Stations detail with tests of Gaussianness and trend

Sl. No. Station Name Latitude/Longitude Sub-division K-S statistics Mann-Kendall ®

1. Jalpaiguri 26.53N,88.72E SHWB# -0.5182  0.0249
2. Alipurduar 26.47N,89.55E SHWB -1.7619  0.1729*
3. Darjeeling  27.10N,88.30E SHWB -1.1400 -0.1910*
4. Kalchini 26.41N,89.25E SHWB -2.0728* -0.0260
5. Malda 25.03N,88.13E SHWB -0.5182  0.0791
6. Kishanganj 26.12N,87.93E SHWB -0.5182  0.0667
7. Mongpo 26.90N,88.50E SHWB  0.1036  0.0249
8. Mathabhanga 26.35N,89.22E SHWB -0.5182  0.1582
9. Amta 22.58N,88.02E GWB$ -1.4510  0.0655
10. Arambag 22.88N,87.78E GWB  0.4146               -0.1612
11. Budge Budge 22.48N,88.18E GWB -0.5182 -0.0124
12. Bongaon 23.07N,88.82E GWB  1.1400  0.0576
13. Burdwan 23.25N,87.85E GWB  0.1036 -0.0927
14. Ghatshila 22.60N,86.50E GWB  0.0364  0.0226
15. Sagar Island 21.65N,88.05E GWB  1.1400  0.1175
16. Kukrahati 22.18N,88.12E GWB  0.1036 -0.0689
17. Ranaghat 23.18N,88.55E GWB  0.1036 -0.1559
18. Uluberia 22.47N,88.12E GWB -1.4509  0.1175
19. Vishnupur 23.08N,87.32E GWB -2.0728*  0.0339
20. Kharagpur 25.12N,86.55E GWB  0.7255  0.0508
21. Silda 63N,86.80E GWB -1.1400  0.0847
*Significant at 5% level. #Sub-Himalayan West Bengal $ Gangetic West Bengal

Fig.1 Station Data Network of West  Bengal
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Cij  = (1/N)  ritrjt

The orthonormal eigenvalues { j } of the
symmetrical matrix are extracted such that the jth
vector  { ij} corresponds to the jth largest eigenvalue

j of the covariance matrix.

The rainfall anomaly at station i in year t can be
represented as orthogonal decomposition in terms
of principal components in time and empirical
orthogonal function (EOF) in space, namely,

rit =   pjt ij

The principal components are defined as

pjt =   rit ij

This transforms the original time series rit into
the new time series pjt, which also reflects the
spatial variation of the original series. The first few
principal component series pjt, usually account for
a large proportion of the spatial variation contained
in the data set. It is found that pjt, can be used to
extract the temporal variability in the data while the
eigenvectors { ij} represent spatial patterns
underlying the data.

The percentage of variance explained by the
eigenvalues for each of the months is presented in
Table 2. It is found that for all the months first 4
eigenvalues (j ,j=1,..,4) accounts for 27-34%, 15-
19%, 7-12% and 6-8% of total variance (Table 2).
The third and fourth eigenvalues contribute to only
7-12% and 6-8% respectively. The first four

eigenvalues taken for all the months June-
September contribute about 60-70% of total
variance.

4. Monthly Rainfall
Monthly rainfall patterns present an interesting

feature as indicated in Table 2 for the first and
second eigenvalues respectively. While the first
eigenvector (e.v.) dominates the spatial structure,
it is observed thatis maximum in June. The feature
is followed by a gradual decrease from July to
September. Also, for the second eigenvalue, the
next dominant spatial structure increases from May
to reach a peak in June. This is followed by a
decrease in August.

A better view of how the rainfall field is getting
organized is provided by the eigenvectors (e.v.)
shown in Fig. 2(a)-(b) to Fig. 5(a)-(b). Here, first
two e.v.s are shown. As the first e.v. is always
predominant, the month–to-month transition would
be of importance. It is seen that the whole state is
spatially correlated (except Jalpaiguri, Alipurduar
and Kalchini in northern part) in June. This means
that above/below normal fluctuation along the
southern part which has the largest weight, would
indicate similar trends in other part of the state. The
picture changes in July when the first e.v. develops
a spatial contrast dividing the state into 3 regions.
In the northern part of the state, there are two
regions (with positive and negative e.v.) and in
southern part, a region of positive e.v. It may be

TABLE 2
Result of Monthly PCA of Stations: First Ten Eigen-values& Cumulative

percentage of variance explained

 Sl.No. JUNE JULY AUGUST SEPTEMBER

     Eigen-val . % var. expl.  Eigen-val . % var. expl.  Eigen-val . % var expl.  Eigen-val.    % var expl.

1. 7.1295 33.9500 6.3312 30.1485 6.1916 29.4840 5.7487 27.3748

2. 3.2237 49.0909 3.8987 48.7135 3.6590 46.9079 3.2662 42.9281
3. 2.4307 60.8758 1.7398 56.9984 1.6364 54.7005 2.0409 52.6452
4. 1.5353 68.1868 1.3682 61.5136 1.4067 61.3993 1.4042 59.3320
5. 1.0270 73.0774 1.2616 69.5211 1.1603 66.9248 1.3158 65.5977
6. 0.7453 76.6266 1.0529 74.5349 1.1172 72.2451 1.1298 70.9778
7. 0.6775 79.8528 0.9425 79.0230 0.9899 76.9590 0.9402 75.4549
8. 0.6088 82.7519 0.7303 82.5008 0.7925 80.7238 0.7513 79.0323
9. 0.6088 85.5254 0.6267 85.4849 0.6213 83.6915  0.6308 82.0363
10. 0.5825 87.7682 0.5726 88.2117 0.5681 86.3969 0.5773 84.7489
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interpreted wherein above/below rainfall in region
of positive e.v. would indicate below/average rainfall
in the region of negative e.v. The pattern intensifies
in August and contrast matures to grow to two
regions of contrast. From the southern part to the
fringe of the northern hill and from the northern hills
along with doors area, there are two regions of
contrast. In September, the pattern of August gets
restored. It clearly indicates growth, maturity and
development of dominant pattern of rainfall.

Fig.2 b Second eigenvector -June. Variance
explained = 15.3509%.

Fig.3a First eigenvector - July. Variance
explained = 30.1485%

Fig.3b Second eigenvector - July. Variance
     explained = 18.5651%

Fig.2a. First eigenvector - June. Variance
explained = 33.9500%.
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Fig.5a First eigenvector - September. Variance
explained =27.3748%

Fig.4b Second eigenvector -August.
           Variance explained = 17.4239%.c

Fig.5b Second eigenvector -September.
Variance explained =15.5534%.

Fig.4a First eigenvector - August. Variance
     explained = 29.48402%;
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An interpretation of the 2nd e.v. would proceed
in the similar lines. As this accounts for about 15-
18% of the variance, it is perhaps the local feature
not related to atmospheric scales. The 2nd e.v. in
June indicates a contrast of four regions namely,
northern hills, mid-central part, south-central and
extreme south respectively. In July, it indicates a
whole state in the same state with contrast develops
on the West part. This is intensified in August. In
September, the contrast develops in west and east

parts of the state. The 3rd and 4th e.v. pattern which
are not presented here, depict further local scales
over which the rainfall is fluctuating about its long
term mean value.

The temporal variability of the rainfall is carried
over to the PCs in descending order of importance.
Each pjt (j=1, 2…) is a time series sampled annually
and would lead to information on inter-annual
variability. All the first 4 PCs of the 4 months have

TABLE 3

Frequency of sign sequences in PC1-PC4 of monthly PCA (N=60 years)

         Sign

      ++                          +-                              -+                          —

                                              —————       —————                —————       —————        —————

       Obs.  Expt.    Obs.   Expt. Obs.   Expt.                  Obs.    Expt.           Chi-sq. obs.

Month: JUNE
PC1 10    9.7627 14    14.2373 14      14.2373  21     20.7627 0.0164

PC2 17    16.2881 14 14.7119 14      14.7119  14     13.2881 0.1381

PC3 15    13.2882 13    6.7241 13      14.7119  18     16.2881 0.7988

PC4 20    15.2543 10    14.7458 10      14.7458  19     14.2542 6.1112**

Month: JULY
PC1 14    10.1694 11    14.8305  10       13.8305  24      20.1695 4.2206**

PC2 16    15.7627 15    15.2372  14       14.2373  14      13.7627  0.0153

PC3 15    13.2881 13    14.7119  13       14.7119  18      16.2881  0.7988

PC4 13    15.2542 17    14.7458  17       14.7458  12      14.2542 1.3788

Month: AUGUST
PC1 13    11.0169 12    13.9831  13       14.9831  21      19.0169 1.1074

PC2  8     10.1695 16    13.8305  17       14.8305  18      20.1695 1.3539

PC3 12    14.7458 17    14.2542  18       15.2542  12      14.7458 2.0457

PC4 17    14.2542 12    14.7458  12       14.7459  18      15.2542 2.0457

Month: SEPTEMBER
PC1 13    15.2542  17    14.7458  17       14.7458  12       14.2542 1.3788

PC2 12    10.1695  13    14.8305  12       13.8305  22       20.1694 0.9638

PC3 17    14.7458  13    15.2542  12       14.2542  17       14.7457 1.3788

PC4 19    15.2542  11    14.7457  11       14.7457  18       14.2542 3.8071**

**Values significant at 5% level.



150

been studied to test the existence of auto-
correlation for a maximum lag of 6 years. Only a
marginally significant auto-correlation such as
JunePC4 (lag2, lag4), JulPC2 (lag5), JulPC3 (lag2
and lag5), AugPC3 (lag6), SepPC3 & PC4 (lag1)
at 5% level are observed. The auto-correlations
though sometimes significant would be of little
importance in forecasting PCs.

As a further test of annual association, the
number of changes in the sign of the first 4
components, namely (++, +-, -+, --) has been
collected in a two-way contingency table. These
are tested against the expected number of
occurrence if the changes were due to chance
(Table 3). The PC series such as PC4 of June,
PC1 of July and PC4 of September are found
significant at 5% level. Hence, year-to-year
association in changes in sign in the above monthly
PC series can be accepted as exhibiting a pattern
and cannot be dismissed as simply due to chance
at 5% level.

5. Monthly Transition
It has been verified and mentioned that station

rainfall does not show month-to-month correlation.
This does not exclude the possibility of a correlation
existing among principal component (PC) series.
PC series are, in fact area rainfall series where
weights of stations are assigned in an optimal way.
However, the possibility of whether the PCs
representing the size of West Bengal can bring out
a feature is still open. If the monthly associations
are present in the rainfall data, it is expected to reflect
into the concerned PCs. Here, one particular
indicator of this relation, namely, the transition in
sign is examined. If rainfall in a given month is
normal at all sampling stations, all the corresponding
PCs would be essentially zero. As the first PC
dominates the spatial variation, when it is zero, it is
expected the rainfall also to be near its own normal
value. Thus, the dependence, if any, in the signs
would indicate patterns in the inter-month variation
of rainfall. In Table 4(a), the observed number of
sequences of ++, +-, -+, — are listed for the first
PC. For each row in Table 4(a), the persistence or
change in the sign can be shown on a 2 x 2
contingency table. The significance of the
association is tested against the number expected,
if the sign changes are purely by chance. For
example, for June, the first PC is + ve, 16 + 15 =
31 times. The corresponding number for July is 16
+ 16 = 32.Now, if the PC’s of June and July are
independent, the expected number of occurrences
of the ++ sequence in 60 observations would be

(31x32)/60=16.53. These frequencies are also
listed in Table 4(a). The null hypothesis H0 is “there
is no dependence in the month-to-month sign
changes”. The chi-square (x2 )test is applied to test
this hypothesis (Rohatgi 1984). The observed x2
values listed in Table 4(a) are compared with the
tabulated x2 value of 3.84, at one degree of freedom
and at 95% significance. Whenever the observed
value exceeds the tabulated value, the null
hypothesis is rejected. However, it is observed that
monthly transitions for the first PC do not exhibit a
pattern and are purely due to chance.

However, it is observed that for first PC, It is
surprisingly observed that the transition from July
to August could be accepted as exhibiting a pattern
at 5% level and cannot be simply dismissed as
being random, whereas the other monthly
transitions are purely random.

A similar analysis for the sign changes of the
2nd PC is also performed and is presented in Table
4(b). As indicated in the table, all the transitions are
purely random at 5% level.

The 3rd and 4 th PC series, though are of
secondary importance explaining about 11% and
7% of variance, the persistence or change in sign
are also tested and are presented in Tables 4(c)
and 4(d) respectively. It is observed that for PC4,
from June to July transitions exhibit a pattern of
sign sequence at 10% level of confidence. All the
other transitions may be accepted as purely
random.

In Table 5, all frequencies observed and the
corresponding expected due to chance are
presented for the inter-month PC transitions,
namely, June-July, July-August and August-
September are presented. It is interesting to note
that in case of June-July, PC4-PC3 and in case of
August-September, PC1-PC2 is clearly identified
as not due to chance at 10% level, whereas the
other transitions can be accepted as purely random.

It is already noted that first four PCs may be
considered for monthly analysis; in the month June-
July, when SWM is in developing form and in
August-September, when SWM is in fully matured
form, the significant transition provides an indication
of how the rainfall could be in the process of matured
form and would be an interesting phenomenon.

6. South West Monsoon (SWM)
variation

An analysis similar to monthlies has been
carried out on the SWM rainfall over 21 stations for
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TABLE 4 (A)
Frequency of sign sequences in PC1 of monthly rainfall (N=60 years)

Sign  ++ +- -+     --
Month  Obs. Expt. Obs. Expt. Obs. Expt. Obs. Expt.      Chi-sq.obs
Jun-Jul 16 16.5333 15 14.4667 16 15.4667 13 13.5333  0.0763
Jul-Aug 9 13.3333 23 18.6667 16 11.6667 12 16.3333  5.1735**
Aug-Sep 8 10.4167 17 14.5833 17 14.5833 18 20.4167  1.6477

*Values significant at 5% level.

TABLE 4 (B)

Frequency of sign sequence in PC2 of monthly rainfall (N=60 years)

Sign  ++ +- -+     --
Month  Obs. Expt. Obs. Expt. Obs. Expt. Obs. Expt.      Chi-sq.obs
Jun-Jul 9 10.3999 15 13. 6000 17 15.6000 19    20.3999    0.5543
Jul-Aug 10 11.2667 16 14.7333 16 14.7333 18    19.2667    0.4434
Aug-Sep 13    13.0000 13 13.0000 17 17.0000 17    17.0000    0.0000

TABLE 4 (C)
Frequency of sign sequences in PC3 of monthly rainfall (N=60 years)

Sign  ++ +- -+     --
Month  Obs. Expt. Obs. Expt. Obs. Expt. Obs. Expt.      Chi-sq.obs
Jun-Jul 15 13.5333 14 15.4667 13 14.4667 18 16.5333   0.5768
Jul-Aug 15 14.0000 13 14.0000 15 16.0000 17 16.0000   0.2679
Aug-Sep 15 15.0000 15 15.0000 15 15.0000 15 15.0000   0.0000

TABLE 4 (D)
Frequency of sign sequences in PC4 of monthly rainfall (N=60 years)

Sign  ++ +- -+     --
Month  Obs. Expt. Obs. Expt. Obs. Expt. Obs. Expt.      Chi-sq.obs
Jun-Jul 19 15.5000 12 15.5000 11 14.5000 18 14.5000 3.2703*
Jul-Aug 12 15.0000 18 15.0000 18 15.0000 12 15.0000 2.4000
Aug-Sep 15 15.5000 15 14.5000 16 15.5000 14 14.5000 0.0667
*Values significant at 10% level.

the period 1900-1960. The first five components
explain about 70% of total variance as inspected in
the analysis (Basak, 2014). The spatial organization
of first two eigenvectors (e.v.) for SWM is presented
in Figures 6 and 7 respectively. Inspection of the
Fig. 6 for the first e.v. indicates a North-South

contrast having negative loadings beneath the
Malda station, namely Gangetic West Bengal
(GWB) and essentially positive loading north of it,
namely Sub-Himalayan West Bengal (SHWB). As
an interpretation, it may be thought of above/below
normal rainfall in the Southern stations throughout
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TABLE 5

Frequency of sign sequences for inter-month transition of Principal Components
(N=60 years)

Sign
      ++                          +-                              -+                          —

                                              —————       —————                —————       —————        —————

      Obs.  Expt.   Obs.   Expt. Obs.   Expt.        Obs.    Expt.    Chi-sq. obs.
JUNE-JULY

PC1-PC2 12     12.8000 12      11.1999  20    19.2000       16     16.7999      0.1786

PC2-PC1  15    13.4333 16      17.5667  11     12.5667       18     16.4333     0.6671

PC2-PC3 16     14.4667 15       16.5333  12     13.5333       17     15.4667     0.6305

PC3-PC2 13     15.4667 16       13.5333  19     16.5333       12     14.4667     1.6315

PC3-PC4 13     14.5000 16       14.5000  17     15.5000        14    15.5000     0.6007

PC4-PC3 11     14.4667 20       16.5333  17     13.5333        12    15.4667     3.2226*

JULY-AUG

PC1-PC2 12      10.8333  14       15.1667  13     14.1667         21    19.8333    0.3801

PC2-PC1 14      13.8667  18       18.1333  12     12.1333        16     15.8667    0.0048

PC2-PC3 14      16.0000  18       16.0000  16     14.0000        12     14.0000    1.0714

PC3-PC2 10      11.6667  18       16.3333  15     13.3333        17     18.6666    0.7653

PC3-PC4 16      14.0000  12       14.0000  14     16.0000        18     16.0000    1.0714

PC4-PC3 16      15.0000  14       15.0000  14     15.0000        16     15.0000    0.2867

AUG-SEP

PC1-PC2  8       10.8333  18       15.6667  17     14.6667        17    19.8333     2.2418*

PC2-PC1             12     12.5000  13       12.5000  18      17.5000       17    17.5000     0.0686

PC2-PC3 13        12.5000  12       12.5000  17    17.5000         18    17.5000     0.0686

PC3-PC2 15        12.5000  15       17.5000  10    12.5000         20    17.5000     1.7143

PC3-PC4 17        15.5000  13       14.5000  14    15.5000         16    14.5000     0.6007

PC4-PC3 15        15.0000  15       15.0000  15    15.0000         15    15.0000     0.0000

*Values significant at 10% level.

PC2-PC3 13        12.5000  12       12.5000  17    17.5000         18    17.5000     0.0686

PC3-PC2 15        12.5000  15       17.5000  10    12.5000         20    17.5000     1.7143

PC3-PC4 17        15.5000  13       14.5000  14    15.5000         16    14.5000     0.6007

PC4-PC3 15        15.0000  15       15.0000  15    15.0000         15    15.0000     0.0000

*Values significant at 10% level.
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the SWM season which has largest weight would
indicate a similar trend in Northern stations and a
below/above normal in the North stations.

For the 2nd e.v., a dominant positive and
negative loading is observed in the southern region
(below Malda station) and also in Northern region
of the state (Fig.7). Clearly, it indicates straight-
forward two regions among Northern stations (with
positive and negative in loadings) indicating
variation of SWM among the Northern stations. In
together, the e.v.s shows a highly correlated field
in case of SWM.

Fig.6 Station Network wit

Fig.7 Station Network with Second Eigen-vector
   (SWM )

7. Inter-annual variability
The SWM PCs are, however, important

because they indicate the presence of annual
signal. A similar analysis for the sign sequence
changes as in Section 5 is performed for the SWM
principal components (PC) series pjt (j=1, 2,.., 5).
The 3rd PC series shows predominantly significant
transition in changes in sign at 1% level of
significance; also first PC series possess the
significant transition at 5% level. All the other PC
series are clearly identified as purely random. Thus,
the first and 3rd component of PCA of the SWM
rainfall contributing 23.90% and 10.53%
respectively of total variance represents a pattern
with characteristic term as a year or a multiple of it.
As an example, the time series of the first PC shows
a predominant period of nearly 2 to 7 years meaning
that the same sign persist for 2 to 7 years before a
change in sign takes place (Fig. 8).

8. Grouping the year
When rainfall over a large area is considered, it

is desirable to arrive at an area rainfall value as a
weighted average of the rainfall at the individual
stations. It may be mentioned that first PC is a
dominant weighted average of the station rainfall
and is a good measure of area rainfall. Further, since
the second component is predominantly second in
order, PC1 and PC2 on any time-scale are the two
most important characteristics of rainfall in a
particular year for the whole network of stations.
Thus, with PC1 and PC2 as coordinates the yearly
data may be represented on a diagram. Such a
representation as in Fig. 9 produces a meaningful
way of comparing the years for the SWM rainfall.
When each station receives exactly its own normal
rainfall, all principal components is zero. Such a
year coincides with the origin in Fig. 9. The nearly
normal years fall around the origin. Years with
excessive rainfall that is flood years such as 1917,
1922 etc. have large positive PC1 and PC2 values
are placed far away from origin in the first quadrant.
Also, years with deficit rainfall years (draughts),
namely 1918, 1920, 1941 etc. possess negative
PC1, PC2 values and are placed on the fourth
quadrant. Nearness of two or more years on this
diagram indicates almost similar atmospheric
conditions. Such information may help in
manipulating the behavior of rainfall.
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Fig.9 Variability of the principal components of the SWM rainfall in West Bengal (1901-1960)

Fig.8 First PC time series of WB rainfall in West Bengal.
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9. Predictability of SWM rainfall
The question next to variability is perhaps

predictability. If the variability, which is a deviation
of rainfall about its long-term average value, is not
purely random, it is expected to possess a temporal
relationship to be detectable; the most probable
relationship is a linear one. But, in the present
context it has been pointed out that monthly rainfall
anomalies exhibit no or marginally significant
autocorrelations. Thus, linear relationships for time-
wise evolution usually do not hold with suitable
statistical test. Alternatively, as non-linear relation
is complicated, the kind of statistical test to detect
the relationship is cumbersome and difficult to
interpret. Moreover, the kind of statistical
methodology to detect nonlinear relations is not
obvious. Principal component analysis (PCA) may
be utilized in this connection. As PCs are found to
possess statistically significant trends in some
cases, it may be appropriate to first predict the PCs

and then estimate the rainfall in terms of past data.
First and 3rd PCs of the SWM rainfall show
significant annual transitions and it is plausible to
ask the probability of the next year PC being above/
below average (+ or —), if in the present year it is
above/below average (+ or —). The two-state
transition probability matrix for first and third PC is
found to be:

Now, it is easy to see that the first PC stands
for annual persistence mode and third PC stands
for annual oscillatory mod. For West Bengal as a
whole with the present data, the oscillation in the
2nd PC is attributable to chance and thus prediction
through a transition may not be justified.

TABLE 6
Correlation of station with the first PC for South West Monsoon

(SWM)

Sl.No.            Correlation                   Stn. Average (July) (mm)

1 0.5872 2668.5017
2 0.6843 2371.2549
3 0.7555 2311.1583
4 0.6324 3030.6015
5 0.5581 1100.1399
6 0.5014 1748.8213
7 0.5191 2546.4435
8 0.6571 2369.8715
9 0.1062 1234.6466
10 0.6290 1025.2199
11 0.0002 1273.3282
12 0.4647 1145.7432
13 0.2338 1089.3658
14      -0.4510 1129.5633
15      -0.5346 1335.6848
16      -0.2317 1251.1499
17      -0.5098  914.4081
18 0.1657 1197.8098
19      -0.4117 1073.5714
20      -0.3884 1102.0283
21      -0.2677 1054.1980
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The first PC in the SWM data is the major PC
component contributing to about 25% of variance
through PCA. It may be accepted as area rainfall
as the weights area optimally assigned. The
transition probability of first PC, that is, as obtained
from the annual association of signs. Also, it is
noticed that the most of the stations are fairly highly
correlated (except a few) with the first PC of SWM
rainfall (Table 6). The strong correlation between
first PC and SWM rainfall leads to the inference
that   when significant can be taken as the
considerable part of SWM rainfall. Then, for
example, for SWM rainfall, the above average
rainfall will be followed by an above average rainfall
with 63% probability. Thus, a kind of prediction
exercise is fruitful for those station SWM rainfalls
which are fairly highly correlation with SWM.

A prediction exercise is undertaken for the
SWM rainfall of the 21 stations wherein the SWM
rainfall of the years 1961-1965 which are not
included in the PCA has been considered. The

number of counts of above/below SWM rainfall (I.e.
++, +-, -+, --) are counted and percentage of
success is evaluated with respect to transition
matrix  . It is observed that the percentage of ++,
+-, -+, -- transitions closely match with the transition
matrix, for example, for ++, 0.55 from 1961-65 data
against 0.63 from analysis and for --, 0.63 from
1961-65 data against 0.75 from analysis (transition
matrix).

10. Predictability of monthly rainfall
In earlier section, it has been pointed out that

regarding SWM, the significant first PC has brought
forward some existence of predictability for SWM
rainfall.

However, it has been observed that in Table
4(a) that transition of first PC from July to August is
not random and exhibit a pattern. The concerned
transition probability for the first PC is

TABLE 7
SWM rainfall of stations above/below average with percentage of transition

+ Above Average; - Below Average No. of signs

       Years
    Station Name Aver. SWM 1981 1982 1983 1984 1985 ++  +-  -+  --

(mm)

   Jalpaiguri 2592.75  - - + + - 1   1   1   1

   Darjeeling 2311.16 + - + + - 1   2   1   0
   Kalchini 3030.60 + + - + + 2   1   1   0
   Malda 1100.14 - - - + + 1   0   1   2
   Mongpo 2546.44 + - - + + 1   1   1   1
   Mathabhanga 2369.87 + + - - + 1   1   1  1
   Amta 1234.65 - - + + - 1   1   1   1
   Arambag 1025.22 + - - - - 0   1   0   3
   Budge Budge 1273.33 - - - - - 0   0   0   4
   Burdwan 1089.37 - - - - - 0   0   0   4
   Ghatshila 1129.56 - - - + - 0   1   1   2
   Sagar Island 1335.68 + - + - - 0   2   1   1
   Kukrahati 1251.15 - - + - - 0   1   1   2
   Ranaghat 914.41 - + - + + 1   1   2   0
   Kharagpur 1102.03 + + - + - 1   2   1   0
   Silda 1054.20 + - - - - 0   1   0   3

  Percent of transition       55 45 37 63
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This represents an oscillatory mode. The above
average rainfall in July is expected to be following
by a below average with 72% probability. This
skewness of the transition is very much interesting
feature that comes out systematically in present
analysis. It has been verified that in case of monthly
analysis, majority of the stations are highly
correlated with the first PC of July and August
(Tables 8a and 8b respectively).

This implies that a kind of predictability for first
PC for July and August would be valid for station
rainfall. In Table 9, for all the stations, the transitions
of July to August are presented. It has been found
that transition from July to August when the SWM
is in matured form, matches fairly well with the
transition probability. It is observed that the
percentage of ++, +-, -+, -- transitions closely match
with the transition matrix, for example, for --‘, 0.53
from 1961-65 data against 0.47 from analysis
(transition matrix).

11. Discussion
The approach in common in understanding the

time series studies of both monthly and SWM
rainfall is that of autocorrelation and power spectrum
analysis. However, the main difficulty arises in the
analysis is the fact that the series are mostly purely
random. Moreover, the rainfall stations being widely
spread and being correlated among themselves,
straight forward time series analysis is complicated
and cumbersome. The analysis of individual the time
series of station would also neglect the spatial
structure that are inadvertently present in a large
area like state. To overcome the ensuing difficulty,
one needs non-linear techniques such as bi-
spectrum analysis (Hartmann and Michelsen,
1989). This definitely asks for a demarcation of area
of station rainfall as performed by Iyenger and
Basak (1994) for All India and Iyenger (1991) for
Karnataka. PCA provides some sort of solution for
the difficulty. A large number of stations spreading

TABLE 8 A
Correlation of stations with the first PC for July

Sl.No.            Correlation                   Stn. Average (July) (mm)

1 0.5872 2668.5017
2 0.6843 2371.2549
1   -0.4937 787.2166
2   -0.5898 886.2615
3    0.1542 761.1501
4   -0.3760 914.4133
5   -0.1473 295.5099
6   -0.5573 540.7315
7   -0.0886 819.5567
8 -0.5230 689.4133
9    0.7586 342.4866
10    0.7401 316.4349
11    0.7487 362.0000
12    0.4313 318.8933
13    0.5951 330.3250
14    0.5777 340.1783
15    0.3786 382.4116
16    0.6083 364.2917
17   0.5458 240.5766
18    0.8158 352.9349
19    0.6448 312.7799
20    0.2718 314.1499
21    0.5414 294.2767
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over long area is handled simultaneously as well
as the number of components for studying
variability becomes comparatively less than the total
number of stations.

PCA can be considered to be a generalized
Fourier decomposition of a random field. In this
technique, a large number of station data may be
handled simultaneously to account for spatial
variabili ty but undoubtedly the number of
components to be studied will be less than the total
number of stations. In the present study, PCA
technique is used to understand SWM rainfall
variability. The station data which are neither
uncorrelated nor perfectly correlated gets
transformed into PCA and extract the temporal
variable characteristic for complete network of
stations.

The advantage of this is apparent when we
observe that for West Bengal rainfall for SWM
period, the first e.v. explains less than 50% of
spatial variance but the first PC and area rainfall
are highly correlated (r= 0.8 as observed) and the

first e.v. demarcates two separate zones, namely
north and south zone (Fig.6). Similarly, the 2nd and
other significant PCs are connected to the area
rainfall in regions where in the corresponding e.v.
has the same sign. The temporal signals that may
be present over large spatial regions would be
carried over into the first few PC time series after
automatically eliminating noises retaining in other
PCs, called spatial noise.

Regarding SWM rainfall predictability, whenever
the PCs show any kind of relationship in auto-
correlation or Power Spectral that are significant
can be predicted as it is commonly done in time
series analysis. However, a prediction exercise
with the help of transition probability (above/below
normal) of PC1 results in a fairly good prediction of
SWM rainfall (Table 7).

Moreover, for the predictability of monthly
rainfall, a prediction exercise based on PC1 July-
August transition resulted in reasonable prediction
of July-August monthly rainfall (Table 9).

TABLE 8 B
Correlation of stations with the first PC for August

Sl.No.           Correlation                  Stn. Average (July) (mm)
1  0.7653 655.9783
2   0.7326 653.3233
3   0.5475 598.1383
4   0.8309 739.8449
5   0.0174 281.4116
6   0.4937 444.0948
7   0.6216 634.7050
8   0.7221 508.8983
9  -0.5420 349.6900
10  -0.5951 299.6182
11  -0.5522 352.5399
12 -0.4722     323.3200
13  -0.3715 303.6833
14 -0.4951     337.1666
15  -0.5738 380.4882
16  -0.5201 340.3983
17  -0.2572 254.0050
18  -0.6300 343.9783
19  -0.4024 330.6932
20  -0.1304 164.8908
21 -0.0346      316.2817
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TABLE 9
July/August rainfalls of Stations above/below average with percentage of transition

+ Above Average; - Below Average J=July: A=August

       Years
    Station Name Aver. SWM  1981     1982  1983     1984       1985  ++  +-  -+ --

       J/A J/A J/A J/A J/A J/A
(mm)

   Jalpaiguri              787.12/ ++ -- ++ +- ++ 2   1   1   1
655.98

   Darjeeling 761.15/ ++ -+ -+ ++ -+ 2   0   3   0
598.14

   Kalchini 914.41/ -+ ++ ++ +- ++ 3   1   1   0
739.84

   Malda 295.51/ -+ +- +- +- +- 0   3   1   1
281.41

   Kishanganj 540.73/ - -+ 0   0   1   1
444.09

  Mongpo 819.56/ ++ -+ ++ ++ -+ 3   0   2   0
634.71

  Mathabhanga 689.41/ ++ -+ 1   0   1  0
508.90

  Amta 342.49/ -- +- +- -+ 0   2   0   2
349.69

  Arambag 316.43/ -- -- -- +- -- 0   1   2   2
299.62

  Budge Budge 362.00/ -+ -- -- +- -+ 0   1   2   2
352.54

  Burdwan 330.32/ -- -- -- ++ +- 1   1   0   3
303.68

  Ghatshila 340.18/ -- -- +- 0   1   0   2
337.17

  Sagar Island 382.41/ -+ -- -+ +- -+ 0   1   3   1
380.49

   Kukrahati 364.29/ -+ -- -- +- -+ 0   1   1   3
340.40

   Ranaghat 240.58/ -- -+ -- -+ -+ 0   0   3   2
254.00

  Vishnupur 312.78/              --            -- 0   0    0   2
330.69

   Kharagpur 314.15/ -+ -+ -+ ++ -+ 1   0   4   0
164.89

   Silda 294.28/ -- -+ +- +- -- 0   2   1   2
316.28

                                              Percent of transition     48  52  47  53
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12. Summary and Conclusions
PCA are sometimes used in meteorological

data analysis; producing a decomposition of the
data field into spatial eigenvectors (e.v.s) and a
temporal time series. Whilst e.v. pattern is used in
meteorological field, the usefulness of the PC time
series has received limited attention in the state-
wise analysis, especially in West Bengal for rainfall
variability. The present investigation is motivated
by the possibility that few PCs may contain valuable
information regarding the maturity, genesis and
variability of rainfall during SWM period. The monthly
rainfall data of West Bengal spread over 21 stations
for a period of 60 years show that PCA is a valuable
tool in grooving insight into temporal patterns
through transition probabilities of the first and 3rd

PCs. For the state, the rainfall variations in June,
July, August and September are related in
sequence. Transitions of fluctuations except from
July to August are due to chance.  For the state as
a whole for the SWM period, the first and 3rd PC
exhibit significant inter-annual transition whereas
the 2nd PC shows no significant trend.

A prediction exercise for predicting the July-
August in the 5 years in 1961-65 through an
estimated transit ion probabil ity has been
surprisingly successful. However, further detailed
analysis is required to quantify predictability of the
PCs as forecast able signals of impending rainfall
variations.
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