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As climate warms, TC intensity is projected to increase.
With larger uncertainty, TC frequency is projected to decrease.

Tropical Cyclone (TC) Metrics:

| AITC frequency

I Category 4-5 TC frequency
I Lifetime Maximum Intensity
IPCC AR5 IV Precipitation rate




Outline

 Have TCs already become stronger, due
to warming up to the present? (Sobel et al.

2016, Science)

* What are the reasons for the projected

future decrease in TC frequency?
(Camargo et al. 2014, J. Climate)



Part 1. Has climate change
already caused increases in TC
intensity?



2005: A couple very prominent studies say tropical cyclones are
getting stronger, due to sea surface temperature (SST) increases.
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More recently: some studies/data sets say TCs are getting
stronger, but not all.
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Low-frequency natural variability is large, making trend-fitting
tricky.

9966 JOURNAL OF CLIMATE VOLUME 26

LMI (ms™)

LMI (ms™")

35 W. Pacific S. Pacific S. Indian

1985 1990 1995 2000 2005 1985 1990 1995 2000 2005 1985 1990 1995 2000 2005
Year Year Year

Kossin et al. 2013



Why do we expect TC intensity to
increase”?



Why do we expect TC intensity to
increase”?

The reasons have become a little more
subtle with time.



It has long been known that sea surface temperature is important
to TCs. They generally don’t form over water below 26-27C.
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So higher SST means more & stronger TCs, right?
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Maybe not. Relative SST (compared to the tropical mean)
matters more than absolute SST.

TC potential intensity
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Maybe not. Relative SST (compared to the tropical mean)
matters more than absolute SST.
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Though absolute SST still has some effect.



In potential intensity theory, the hurricane can be viewed as
an ideal (Carnot) heat engine (K. Emanuel, MIT)
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This theory gives successful predictions of the maximum
intensity a TC can reach
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Pl theory has some success at
predicting variability in TC
intensity, given the tracks

(Wing, Camargo, Sobel, 2007, GRL)
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Pl is projected to increase in the future as climate warms.

CMIP5
historical

Sobel et al. 2016



Change in PI, late 21¢-20c, CMIP5
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High-resolution models support Pl theory and project increasing
intensities.

Climate Change Projection

E o—e Control chimate
o—a Warmed climate

.~

S83888

NuUmMpber ot LUccurrences

20 30 40 50 60 70 80
Maximum Wind Speed (m/s)

Bender et al. 2010



But Pl trends in observations are not entirely clear or consistent

(except in the Atlantic).

Wing et al. 2015

Table 2. Contribution to Decadal Trend in Potential Intensity (m s~' decade™")?

Contribution From Contribution From Total Efficiency as
Basin Disequilibrium Trend Efficiency Trend Trend Percent of Total
North Atlantic

ERA-Interim 1.04 0.08 112 7%

MERRA 041 0.23 0.64 36%

San Juan 1.47 0.62 2.10 30%
Eastern North Pacific

ERA-Interim -0 -0.14 -025 57%

MERRA -1.13 -0.04 -1.17 3%

Hilo -0.27 0.06 -0.21 -31%
Western North Pacific

ERA-Interim 0.77 -0.05 0.72 —6%

MERRA -037 0.01 -035 —4%

Koror 0.61 —-0.08 053 —-16%

Chuuk 0.58 -0.01 0.57 —2%

Majuro 0.26 0.24 0.50 48%

Marcus 0.97 0.00 0.98 0%

North Indian

ERA-Interim 030 0.00 0.30 0%

MERRA -1.02 0.08 -0.94 —9%
Southern Hemisphere

ERA-Interim 1.07 0.00 1.07 0%

MERRA 0.05 0.1 017 69%

Darwin -0.26 0.25 —0.01 —-1727%

3Contributions from the last two terms in equation (2), for the ERA-Interim and MERRA reanal-
yses, and RATPAC station data averaged over the months and regions defined in Table 1. Trends
that are significant at the 95% confidence level are in bold font, and negative percentages
indicate that the efficiency trend and total potential intensity trend are of opposite sign.



In fact, CMIP5 models suggest that Pl should not have increased
much yet, due to aerosoils.
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Aerosol forcing < greenhouse forcing (hence global warming) but
shortwave forcing appears more effective at changing PlI, for the
same SST change, than longwave.

Potential Intensity (m/s)
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Aerosol forcing is projected to decrease (due to cleanup of sulfate
emissions) but greenhouse forcing (hence global warming) is
very likely to increase at least for a few more decades.
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Aerosol forcing already shows signs
of having reached a plateau.

Smith et al. 2011
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Conclusions, part 1

We expect tropical cyclones to become more intense as
the climate warms, because greenhouse warming
generally increases PI.

But aerosol cooling decreases Pl, more efficiently (per
degree SST).

Thus although greenhouse gas warming > aerosol
cooling, so the climate has warmed (~1° C), aerosol
cooling has kept Pl (and, likely, actual TC intensities)
from increasing much, at least til recently.

In recent decades, aerosol cooling has begun to plateau
while greenhouse warming has continued to increase.
Thus the intensity increases are coming.



Part 2: Why do models project
decreases in TC frequency?



Potential intensity theory tells us something about TC intensity,
But does not tell us whether a TC will exist in the first place!
We have no systematic theory for genesis, thus we have none

for TC frequency (number/year)



So we develop empirical genesis indices following early work
of W. Gray

E.g., Emanuel GPI (Emanuel and Nolan, 2004; Camargo,
Emanuel and Sobel 2007)

GP= [105 32 (H/50)? (Vo T0)? (1+0.1V p00) 2

= absolute vorticity at 850hPa (s)

= relative humidity at 700hPa (%)

= potential intensity (m/s)

= magnitude of the vertical wind shear between 200 and
850hPa (m/s).



Though genesis indices are empirical, they can be tested on
natural variability (which is not used to derive the index). E.qg.
here we show composites, El Nino minus La Nina

40N =u2

20N

Genesis
Potential 0
Index

20S

40N —=

20N

Observed
Track 0
Density

20S

Camargo, Emanuel & Sobel, J. Climate 2007



More recently we developed a new genesis index, using Poisson
regression — allows easy re-derivation if new/different predictors
are defined (Tippett, Camargo, and Sobel 2011, J. Climate 2011)

« Best fit TCG index:
TCGI =exp(-11.96 + 1.12 min(|n|,3.7) +
0.12 H +0.46 RSST - 0.13 Vg + log cos®)

In| = absolute vorticity (850hPa) x 10°

H = column relative humidity

RSST = relative SST (SST - mean tropical SST)
V¢ = vertical shear (200hPa and 850hPa)



In the process of fitting the data to obtain the index, we learn
new physics; here that environmental absolute vorticity (~latitude)
only helps up to a point (Tippett, Camargo, and Sobel, J. Climate 2011)

« Best fit TCG index:
TCGI =exp(-11.96 + 1.12 min(|n|,3.7) +
0.12H+0.46 RSST -v..2 "' " "= cusD)
In| = absolute vorticity (850hPa) x 10°
H = column relative humidity
RSST = relative SST (SST - mean tropical SST)
V¢ = vertical shear (200hPa and 850hPa)



One must be very careful using genesis indices for climate
change. They are derived from spatial and seasonal variations
In the present climate, so global warming is out of sample.



For example, the SST threshold for TC formation almost
certainly will change as climate does — thus one should not use
absolute SST as a predictor (cf. Vecchi and Soden 2007)

TC potential intensity
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For example, the SST threshold for TC formation almost
certainly will change as climate does — thus one should not use
absolute SST as a predictor (cf. Vecchi and Soden 2007)
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(However, relative SST also is limited as an indicator; e.qg. it
can't tell us anything about changes due to uniform warming.)



The major new development in TC-climate studies in the last
~decade is global “high-resolution” (~10-50 km grid spacing)
models

http://nicam.jp/hiki/? About+NICAM



Though there is not complete agreement, these models seem to
indicate for the most part that TC frequency will decrease globally
In @ warmer climate.

http://nicam.jp/hiki/? About+NICAM



Though there is not complete agreement, these models seem to
indicate for the most part that TC frequency will decrease globally
In a warmer climate.

To understand this and other results from these models better, we
have been doing an intercomparison under US CLIVAR
http://www.usclivar.org/working-groups/hurricane

/—a US CLIVAR

US CLIVAR  Climate Variabllity and Predictability Program__ |

.

Home Aboutv Groups and Teamsv US AMOC~ Publications v Sciencev Meetingsv C

Hurricane Working Group

The US CLIVAR Hurricane Working Group was formed in January of 2011 to coordinate
efforts to produce a set of model experiments designed to improve understanding of
the variability of tropical cyclone formation in climate models.

The scientific objectives of the Hurricane WG include:

« an improved understanding of interannual variability and trends in the tropical
cyclone activity from the beginning of the 20th century to the present

e quantifying changes in the characteristics of tropical cyclones under a warming
climate.



The NOAA/GFDL HiIRAM model arguably emerges as the best one

Climatological track density
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The NOAA/GFDL HiIRAM model arguably emerges as the best one

Climatological track density
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We use this model to test: 1. the genesis index methodology for
use in global warming; 2. Our understanding of the reasons behind
the simulated decrease in frequency



We use this model to test: 1. the genesis index methodology for
use in global warming; 2. Our understanding of the reasons behind
the simulated decrease in frequency.

We first derive a genesis index (using Poisson regression) from the
model’'s own TC statistics and large-scale environment, in
simulations of the recent historical climate.

Then, we test whether that index correctly captures the frequency
changes in the warmer climate in the same model.

This is a “perfect model” approach.



We find that we get good results only if we replace relative
humidity by saturation deficit.
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We find that we get good results only if we replace relative
humidity by saturation deficit.
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One is the ratio of specific humidity to its saturation value,
the other is the difference. Their space/time variations in the

present climate are almost identical.



We find that we get good results only if we replace relative

humidity by saturation deficit.

(a) Column RH & PI
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At fixed RH, saturation deficit increases with temperature.
Thermodynamically, there is reason to think saturation deficit
should matter — it's the absolute entropy the ocean has to supply.



Conclusions

« Models suggest aerosol cooling has kept TC potential
intensity changes small so far, even though globe has

warmed.

« QOur empirical genesis indices are able to capture natural
variability, e.g., ENSO, in TC frequency.

* Model-simulated decrease in TC number with warming
appears related to the saturation deficit increase — a
consequence of constant relative humidity under
warming.



Book on Sandy (HarperCollins)

HURRICANE SANDY,
OUR CHANGING CLIMATE, mo
EXTREME WEATHER OF THE PAST ao FUTURE

Columbia page: www.columbia.edu/~ahs129/home.html
Blog: adamsobel.org

Facebook: www.facebook.com/adam.sobel
Twitter: @profadamsobel




Potential intensity theory gives broadly successful predictions
of the maximum intensity a TC can reach in the present climate.
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Figure 3 Minimum sustainable central pressurc ol tropical cyclones (in mil]ibursl under
September climatological conditions. The central pressures of some of the most ntense
tropical cyclones on record are shown by ilalicized numbers and crosses.



