Storm Surge Inundation in North Indian Ocean Under Climate Change Scenarios

Shishir Dube

Amity University Rajasthan, Jaipur

Loss of life due to storm surges in the North Indian Ocean (> 999)

Year	Country	Number of Deaths
1970	Bangladesh	300,000
1737	India	300,000
1876	Bangladesh	200,000
1897	Bangladesh	175,000
1991	Bangladesh	140,000
2008	Myanmar	140,000
1833	India	50,000
1864	India	50,000
1822	Bangladesh	40,000
1864	India	40,000
1942	India	40,000
1789	India	20,000
1839	India	20,000
1977	India	20,000
1965	Bangladesh	19,279
1999	India	15,000
1963	Bangladesh	11,520

Loss of life due to storm surges in the North Indian Ocean (> 999)

Year	Country	Number o Deaths
1961	Bangladesh	11,466
1985	Bangladesh	11,069
1971	India	10,000
1998	India	10,000
1960	Bangladesh	5,149
1988	Bangladesh	5,708
1972	India	5,000
1960	Bangladesh	3,000
2007	Bangladesh	3,000
1885	India	2,000
1989	Bangladesh	2,000
1996	India	2,000
1952	India	1,500
1964	India	1,000

DEATHSIN TROPICAL CYCLONESYEARCOUNTRIESDEATHS

1970	Bangladesh	300 000	
1777	Tudia	200,000	•75% events in
1/3/	India	300,000	the Bay of
1886	China	300,000	Bengal
1923	Japan	250,000	
1876	Bangladesh	200,000	• 56% of Bay
1897	Bangladesh	175,000	events in
1991	Bangladesh	140,000	Bangladesh
2008	Myanmar	140,000	• 70% Deaths in
1833	India	50,000	Bangladesh
1864	India	50,000	Bungiudesh
1822	Bangladesh	40,000	
1780	Antilles(West Indies)	22,000	
1965	Bangladesh	19,279	
1999	India	15,000	
1963	Bangladesh	11,520	
1961	Bangladesh	11,466	
1985	Bangladesh	11,069	
1971	India	10,000	
1977	India	10,000	
1966	Cuba	7,196	
1900	USA	6,000	
1960	Bangladesh	5,149	
1960	Japan	5,000	
1972	India	5.000	

Factors Contributing to Disastrous Surge in the Bay of Bengal

Convergence of the <u>Bay</u>

Large Bottom Friction

Shallow Water

Retards return undercurrents

Thickly Populated Low Lying Islands

(Ramgati, Sandwip, Hatia, Bhola & Kutubdia)

- High Astronomical Tides
- Inlets & Estuaries

Effect of Climate Change

- The intensity (as represented by the winds) of tropical cyclones might increase in the range of 2-11% (Knutson et al.,2010)
 - Coastal inundation from storm surge is computed under the following three different scenarios:
- (a) no climate change,
- (b) intensification of tropical cyclone by 7% which is an average value in the projected climate change range
- (c) the intensification by 11% which is the extreme case

IT Numerical Storm Surge Model

Storm Surge Prediction System

Significant Feature

- Ability to investigate multiple forecast scenario in real time
- Updates cyclone track as the cyclonic storm approaches the coast and meteorological forecast become more accurate

Highlights

- Under the auspices of TCP/WMO the technology (IIT Model) has already been transferred to the meteorological services of Bangladesh, Myanmar, Thailand, Sri Lanka, Pakistan & Oman for their use
- From Cyclone Season of 2009, RSMC New Delhi is using IIT Model for providing Storm Surge Guidance to the Countries of the Region

Peak Surge Envelope 2007 Gonu Cyclone

Peak Surge Envelope 2013 Phailin Cyclone

Peak Surge Envelope 2014 Hudhud Cyclone

Peak Surge Envelope 2007 Bangladesh Cyclone SIDR

Peak Surge Envelope 2008 Myanmar Cyclone NARGIS

Tracks cyclones (1891-2007) used to prepare composited tracks

All the tracks

Tracks for Gujarat

Tracks for Tamil Nadu

Tracks for Andhra Pradesh

Tracks for Odisha

Tracks for Bangladesh

Composited storm tracks for different regions for storm surge amplitude computations

Most Intense Cyclone that hit the Gujarat Coast of India

 $\Delta P = 66 \text{ hpa} 7\% \text{ increase in } 11\% \text{ increase in } winds$ No Climate Change winds winds
Storm Surge amplitudes for Gujarat coast of India

Most Intense Cyclone that hit the Tamil Nadu Coast of India

 $\Delta P = 62 hpa$

No Climate Change

7% increase in winds

11% increase in wind

Storm Surge amplitudes for Tamil Nadu coast of India

Most Intense Cyclone that hit the Andhra Pradesh Coast of India

 $\Delta P = 98 \text{ hpa} 7\% \text{ increase in } 11\% \text{ increase in } winds$ No Climate Change winds winds Storm Surge amplitudes for Andhra Pradesh coast of India

Most Intense Cyclone that hit the Odisha Coast of India

 $\Delta P = 98 \text{ hpa}$ No Climate Change T% increase in Winds T% increase in Winds $T\% \text{ or } Storm Surge amplitudes for}$ Odisha coast of India

Most Intense Cyclone that hit the Bangla & Bangladesh Coast

 $\Delta P = 80 \text{ hpa}$ No Climate Change

7% increase in winds

11% increase in winds

Storm Surge amplitudes for Head Bay

Maximum storm surge amplitudes (m) for different regions and different climate change scenarios

Regions	Amplitude (m) No Climate Change	Amplitude (m) 7% Intensification	Amplitude (m) 11% Intensification
Gujarat	6.8	7.6 (11.8 % increase)	8.0 (17.6% increase)
Tamil Nadu	3.8	4.3 (13.2 % increase)	4.5 (18.4% increase)
Andhra Pradesh	4.6	5.1 (10.9% increase)	5.4 (17.4% increase)
Odisha	4.5	5.0 (11.1% increase)	5.8 (28.8% increase)
Head Bay	7.0	7.8 (11.4% increase)	8.5 (18.8% increase)

Storm Surge Inundation in Rekhine & Deltaic Coast of Myanmar Under Climate Change Scenarios

Peak Surge Envelope 2008 Myanmar Cyclone NARGIS

Tracks cyclones (1891-2007) hitting Myanmar Coast

 $\Delta P = 52 \text{ hpa}$

7% increase in winds

11% increase in winds

Storm Surge amplitudes for Northern most coast of Myanmar

Without climate change $\Delta P = 52$ hpa

11% increase in winds

A comparison of extent of coastal stretch of the Northern most coast of Myanmar affected by Storm Surge with & without climate change projection

 $\Delta P = 52 hpa$

7% increase in winds

11% increase in winds

Storm Surge amplitudes for Central Rekhine coast of Myanmar

Without climate change $\Delta P = 52$ hpa

11% increase in winds

A comparison of extent of coastal stretch of the Central Rekhine coast of Myanmar affected by Storm Surge with & without climate change projection

 $\Delta P = 52 hpa$

7% increase in winds

11% increase in winds

Storm Surge amplitudes for Deltaic coast of Myanmar

Without climate change $\Delta P = 52$ hpa

11% increase in winds

A comparison of extent of coastal stretch of the Deltaic coast of Myanmar affected by Storm Surge with & without climate change projection

Maximum storm surge amplitudes (m) for different regions and different climate change scenarios

Regions	Amplitude (m)	Amplitude (m)	Amplitude (m)
	No Climate	7%	11%
	Change	Intensification	Intensification
Norther n most Rekhine	4.0	4.5 (12.5 % increase)	4.8 (20% increase)
Rekhine Central	3.4	3.8 (11.8 % increase)	4.1 (20.6% increase)
Deltaic	6.6	7.4 (12%	7.8 (18%
Coast		increase)	increase)

